THERMAL BEHAVIOUR OF METAL P-HYDROXYBENZOATES

Hadjali N. Nadjafov, Institute of Inorganic and Physical Chemistry of Acad. Sci. Azerb. SSR, Baku, USSR
Faik N. Musaev, Institute of Inorganic and Physical Chemistry of Acad. Sci. Azerb. SSR, Baku, USSR
Anatoly N. Shnulin, Institute of Theoretical Problems of Chemical Technology of Acad. Sci. Azerb. SSR, Baku, USSR
Khudu S. Mamedov, Institute of Inorganic and Physical Chemistry of Acad. Sci. Azerb. SSR, Baku, USSR

ABSTRACT

The thermal decomposition of divalent metals as Mg,Mn,Co,Ni, Zn,Cd p-hydroxybenzoates had been investigated in dynamic conditions under air in temperature range 20-1000°C. The solid state intermediate and resultant products of thermolysis had been identified. The possible scheme of destruction of the complexes is suggested. The X-ray single crystal structure analysis has shown that Mg,Mn,Co,Ni,Zn p-hydroxybenzoates do form the series of isostructural compounds of the composition $[M(H_2O)_6]L_2^{2}H_2O$. By means of X-ray powder analysis the structure of the intermediate thermolysis products had been studied.

INTRODUCTION

The reveal of the relationship between the structure and thermolysis of metal carboxylate complexes, the study of the influence of metal and ligand nature on the process of thermal decomposition are of a certain interest. But the reported data on thermal decomposition of the complexes with aromatic carboxylate ligands are too rare. There had been studied the thermal decomposition of some cu complexes/1-3/ and alkali metals/4,5/ with benzoic acid derivatives. In the present work there are given the results of X-ray and thermogravimetric studies of metal p-hydroxybenzoates.

MEASURING METHODS

<u>Preparation of the complexes.</u> The complexes had been synthezised by mixing in 1:2 ratio at room temperature of the aquaous solutions of chlorides and sulphates of the corresponding metals and Na p-hydroxybenzoate at pH of the solution 6-7. The composition of the complexes had been determined by element analysis: $ML_2 \cdot 8H_2O$ (M=Mg, Mn, Co, Ni, Zn; L=p-HOC₆H₄COO⁻), CdL₂ · 7H₂O. Thermogravimetry. The process of thermal destruction of the complexes had been investigated on Hungarian MOM-model at heating rate 10°C/min.Al₂O₃ was used as ethalone. The measurement had been carried out in covered Pt crucible. To identify the solid state intermediates and resultant products of thermolysis the isothermic calcination of the complexes had been carried out at different temperatures.

<u>X-ray analysis.</u> The X-ray powder analyses had been done on Dron-2-model(λ Cu-K₄ -radiation, V=32 kv, I=20 mA). The crystal structures had been solved by heavy atom method and refined anisotropically by least square procedure. For the compounds studied there has been collected as the three-dimensional data intensity set by using fourcircle automatic diffractometer "Syntex P2₁" (9-29 scantechnique, λ Mo-K₄ -radiation).

RESULTS AND DISCUSSION

The X-ray analyses had shown/6/ that Mg,Mn,Co,Ni,Zn p-hydroxybenzoate octahydrates form the series of isostructural compounds, their structures being of symmetrical octahedron aquaions $\left[M(H_2O)_6\right]^{2+}$ (except cadmium complex $\left[Cd(H_2O)_5L\right]^+$),two outer sphere acidic anions and two molecules of water of crystallisation.The analysis of DTA shows that complexes of Mn,Zn,Cd with high water content at 35-55°C are transformed to hydrate isomers:

$$\begin{bmatrix} M(H_20)_6 \end{bmatrix} L_2 \cdot 2H_20 \xrightarrow{50-55^{\circ}} \begin{bmatrix} M(H_20)_4 L_2 \end{bmatrix} 4H_20 \quad (M=M^n, Z^n) \\ \begin{bmatrix} Cd(H_20)_5 L \end{bmatrix} L \cdot 2H_20 \xrightarrow{35^{\circ}} \begin{bmatrix} Cd(H_20)_4 L_2 \end{bmatrix} 3H_20.$$

The crystal structure of the complexes obviously indicates that with temperature increase the carboxyl group oxygen replaces two more weakly bonded transoid water molecules($Mn-OH_2$ 2.228(5) Å) from coordination aphere of metal. In this case the COO group is coordinated to Mn as a unidentate ligand, the two water molecules le removed from metal coordination transfering in the outer sphere.

The further heating results in dehydration of the complexes with stable anhydrous and small amount of water containing phases formation. In the case of Mn complexes first is formed the stable phase containing three molecules of water/7/.With temperature increase the structural function of acidic anion is changed. If in the initial octahydrate complex the acidic anion is outer sphere,

Table. Thermograviometric	data	for	the	complexes	studied

Complex	Tempera- ture range,	tmax, °C	Stable interme-	Mass loss %		Solid state
2	°C(DTA)	(DTA)	diate product existen- ce tempe rature,°C	Found	i Calc	products composi- tion
MgL_8H_0	65-140	105(-)	130-135	21.2	20.4	MgI_23H_20
	140-180	150(-)	160-170	28.6	28.5	MgI22H20
1	180-215	195(-)	200-210	32.4	32.6	MgL2
	215-260	225(-)	250-265	48.9	48.2	Mg2L2L'
	260-730			91.7	91.0	MgO
CoI28H2O	65-200	85,105,120(-)	150-155	26.8	26.4	CoL ₂ H ₂ O
		155(-)	190–205	30.4	30.2	Colo
	200-240	215(-)	280-330	43.1	44.6	Co ₂ L ₂ L'
	480-710			87.5	87.6	Co
	710-800	720(+),790(+)	815-870	83.8	83.2	CozO4
	850-910	825(-)	890-1000	84.9	84.3	000
NiL28H20	60 -23 5	80,105,120,170	145-170	28.3	30.2	NiL
	235-290	250(-)	290	57.4	59.2	NiL
	310-645		645	88.7	87.7	Ni
	645-745	680(+)	775-1000	85.3	84.3	NIO
ZnL ₂ 8H ₂ 0	35-60	55(-)	1			Zn Lo8HoO
	60-175	105(-)	130-185	29.3	29.8	ZnLo
	175-215	185(-)	mel	tin	g	ZnL
	215-265	235(-)	310-360	45.2	44.1	ZngIgL
	395-905		895-1000	83.2	83.2	ZnO
MnL28H20	35-70	50(-)	1			MnL ₂ 8H ₂ 0
	70-130	150(-)	1	18.3	19.0	MPL 3HO
	130-210	135(-)	160-175	27.6	26.6	Mm Lo HoO
		190(-)	210-240	29.6	30.4	Malo
	250-310	280(-)	310-370	60.4	59.4	Mul
	370-705		1	85.7	83.9	Mnz O
CdLo7Ho0	25-50	35(-)				CdL 7H 0
~ ~ ~	50-185	85(-)	120-255	25.4	24.6	CdL
	275-345	315(-)	335-370	50.8	51.4	CdL
	345-915		890-1000	76.0	75 0	CgO

then after the hydrate isomerisation it coordinates to Mn as unidentat ligand, while after the remove of 5 molecules of water the carboxylic group manifests itself as bridging bidentate ligand.

In the anhydrous and monohydrate crystals apparently the acidic anion performs the more complex polydentate structural function or the coordination number of Mn is decreased to 4-5, its bidentate-bridging function of COO group remaining.

In the Table there are given the main thermographic data for the studied complexes. The analysis of thermograviograms indicates that the temperatures of the dehydration start of isostructural complexes factually do not distinguish from each other and are in temperature range 60-70°C. However the process of full dehydration, as well as the number of stages for each complex depending upon the metal nature are different. The decomposition of anhydrous complexes proceeds with the isolation of p-hydroxybensoic acid, formation of stable intermediate products of ML' and MpIpL' composition: $M_{L_{250-315^{\circ}}}$ ML' + HL (M=Mn, Cd, Ni: L'= $OC_{c}H_{u}COO^{2-}$)

2MI2 215-235 MalaL' + HL (M=ME,CO,Zn).

Afterwards there proceeds the crystallisation and rearrangement of intermediate compounds such as ML! and M2L2L! with their subsequent destruction. These complex processes are stated on the DTA curves with the corresponding endo- and exothermic effects. The final results of thermolysis are the oxides of corresponding metals.Ni and co complexes are destructed to free metal, its oxidation being the consequent process.

REFERENCES

- 1 K. VOShinori, S. Reiko, K. Hisashi, J. Pharm. Soc. Jap., 92 (1972) 1063
 2 P. S. Bassi, P. C. Kalsi, Indian J. Chem., <u>A</u>14 (1976) 957
 3 M. H. Borel, F. Busnot, A. Leclaik, Z. anorg. Und allg. chem., <u>449</u>(1979)177
 4 K. Ota, J. Chem. Soc. Jap. Ind. Chem. Sec., <u>77</u> (1974) 1697
 5 V. Hara, H. Osada, J. Chem. Soc. Jap. Ind. Chem. Sec., <u>73</u> (1970) 1996
 6 A. N. Shnulin, G. N. Nadjafov, Kh. S. Manedov, XII International Congress of Curvetal Lography. Collected Abstracts, Citage 1981 of Crystallography.Collected Abstracts, Ottawa, 1981
- 7 А.Н.Шнулин, Г.Н.Наджафов, Х.С. Мамедов, Журнал структурной химии, 25 (1984) 91